條件機率(Conditional Probability)的概念,Bayes Formula,在日常生活中機率應該是最常使用的公式,由於多維的時候需要寫一長串公式,所以這邊自己嘗試定義推廣到抽象化的代數符號!!
令 X,Y,Z 為連續隨機變數的集合,f_X, f_Y,f_Z 為 joint pdf
1.Define:
\left<\frac{X}{Y} \right> := \frac{f_{X\cup Y}}{f_Y}
(p.s : 意思是給定 Y 資訊下,測量X 的機率密度 ,即 X|Y 的分布)
-------------------------------------------------------------------
[Ex: 二維的例子]
X = \{x_1,x_2\}, Y=\{x_2\} \Longrightarrow \left<\frac{X}{Y} \right> = \frac{f(x_1,x_2)}{f(x_2)}
其中分子為 joint (x_1,x_2) , 分母為 marginal x_2
-------------------------------------------------------------------
2.No Information : (f_\emptyset = 1)
\left< \frac{X}{\emptyset} \right> := f_X
3.Integration Formula : (if Y\subset X)
\left<\frac{Y}{Z} \right>= \int_{X\setminus Y}\left<\frac{X}{Z} \right>
--------------------------------------------------------------------
[Ex: 二維的例子]
X = \{x_1,x_2\}, Y=\{x_1\},Z=\emptyset
\Longrightarrow \left<\frac{Y}{Z} \right> = f(x_1) = \int_{x_2 \in \mathbb{R}}f(x_1,x_2) dx_2 = \int_{X\setminus Y}\left<\frac{X}{Z} \right>
其中左式為 marginal x_1 右式為 joint (x_1,x_2) 對 x_2 的積分
--------------------------------------------------------------------
4.Equal To 1:
\left< \frac{\emptyset}{Z} \right> = \int_{X\setminus \emptyset} \left<\frac{X}{Z} \right> = 1
5.Bayes' Theorem :
\left<\frac{Y}{X\cup Z} \right> \cdot \left<\frac{X}{Z}\right> = \left<\frac{X\cup Y}{Z}\right> = \left<\frac{X}{Y\cup Z} \right> \cdot \left<\frac{Y}{Z}\right>
--------------------------------------------------------------------
[Ex: 二維的例子]
X = \{x_1\}, Y=\{x_2\},Z=\emptyset
f(x_2|x_1)\cdot f(x_1) = f(x_1,x_2) = f(x_1|x_2) \cdot f(x_2)
這就是 conditional \times marginal = joint !!
--------------------------------------------------------------------
(註: 貝氏統計(Bayesian statsitics)裡,X 為母體參數向量,Y 為樣本隨機向量,Z = \emptyset
當樣本給定X時!! 則 \left<\frac{Y}{X\cup Z} \right> 稱為 likelihood ,\left<\frac{X}{Z} \right> 稱為 prior ,\left<\frac{X}{Y\cup Z}\right> 稱為 posterior)
6.X,Y are independent :
\left<\frac{X}{Y} \right>= \left< \frac{X}{\emptyset} \right> \text{ and } \left<\frac{Y}{X} \right>= \left< \frac{Y}{\emptyset} \right>
7.X self-independent :
\left<\frac{X}{Z} \right>= \prod_{x\in X}\left< \frac{\{x\}}{Z} \right>
-----------------------------------------------------------------
[Ex: Naive Bayes Classifier 的假設]
X = \{x_1,x_2,x_3,....x_n\},Z= \{z\}
f(x_1,x_2,....x_n|z) = \prod^{n}_{i=1} f(x_i|z)
------------------------------------------------------------------
8.X joint pdf-decomposition :
(Given Nested Sequence S_i s.t \overset{=S_0}{\emptyset} \subset S_1\subset...\subset S_{n-1} \subset \overset{=S_n}{X} )
\left<\frac{X}{\emptyset} \right>= \prod^{n}_{i= 1}\left< \frac{S_{i}}{S_{i-1}} \right> = \prod^{n}_{i= 1}\left< \frac{S_{i}\setminus S_{i-1}}{S_{i-1}} \right>
[註 : 因為 S_{i-1} \subset S_{i} \Longrightarrow S_{i}\cup S_{i-1} = (S_{i}\setminus S_{i-1}) \cup S_{i-1} ]
--------------------------------------------------------------------
[Ex: 四維單一展開]
X = \{x_1,x_2,x_3,x_4\} , S_1=\{x_1\} ,S_2=\{x_1,x_2\} , S_3 = \{x_1,x_2,x_3\}
f(x_1,x_2,x_3,x_4) = f(x_1) \cdot f(x_2|x_1) \cdot f(x_3 | x_1,x_2) \cdot f(x_4 | x_1,x_2,x_3)
--------------------------------------------------------------------
令 X,Y,Z 為連續隨機變數的集合,f_X, f_Y,f_Z 為 joint pdf
1.Define:
\left<\frac{X}{Y} \right> := \frac{f_{X\cup Y}}{f_Y}
(p.s : 意思是給定 Y 資訊下,測量X 的機率密度 ,即 X|Y 的分布)
-------------------------------------------------------------------
[Ex: 二維的例子]
X = \{x_1,x_2\}, Y=\{x_2\} \Longrightarrow \left<\frac{X}{Y} \right> = \frac{f(x_1,x_2)}{f(x_2)}
其中分子為 joint (x_1,x_2) , 分母為 marginal x_2
-------------------------------------------------------------------
2.No Information : (f_\emptyset = 1)
\left< \frac{X}{\emptyset} \right> := f_X
3.Integration Formula : (if Y\subset X)
\left<\frac{Y}{Z} \right>= \int_{X\setminus Y}\left<\frac{X}{Z} \right>
--------------------------------------------------------------------
[Ex: 二維的例子]
X = \{x_1,x_2\}, Y=\{x_1\},Z=\emptyset
\Longrightarrow \left<\frac{Y}{Z} \right> = f(x_1) = \int_{x_2 \in \mathbb{R}}f(x_1,x_2) dx_2 = \int_{X\setminus Y}\left<\frac{X}{Z} \right>
其中左式為 marginal x_1 右式為 joint (x_1,x_2) 對 x_2 的積分
--------------------------------------------------------------------
4.Equal To 1:
\left< \frac{\emptyset}{Z} \right> = \int_{X\setminus \emptyset} \left<\frac{X}{Z} \right> = 1
5.Bayes' Theorem :
\left<\frac{Y}{X\cup Z} \right> \cdot \left<\frac{X}{Z}\right> = \left<\frac{X\cup Y}{Z}\right> = \left<\frac{X}{Y\cup Z} \right> \cdot \left<\frac{Y}{Z}\right>
--------------------------------------------------------------------
[Ex: 二維的例子]
X = \{x_1\}, Y=\{x_2\},Z=\emptyset
f(x_2|x_1)\cdot f(x_1) = f(x_1,x_2) = f(x_1|x_2) \cdot f(x_2)
這就是 conditional \times marginal = joint !!
--------------------------------------------------------------------
(註: 貝氏統計(Bayesian statsitics)裡,X 為母體參數向量,Y 為樣本隨機向量,Z = \emptyset
當樣本給定X時!! 則 \left<\frac{Y}{X\cup Z} \right> 稱為 likelihood ,\left<\frac{X}{Z} \right> 稱為 prior ,\left<\frac{X}{Y\cup Z}\right> 稱為 posterior)
6.X,Y are independent :
\left<\frac{X}{Y} \right>= \left< \frac{X}{\emptyset} \right> \text{ and } \left<\frac{Y}{X} \right>= \left< \frac{Y}{\emptyset} \right>
7.X self-independent :
\left<\frac{X}{Z} \right>= \prod_{x\in X}\left< \frac{\{x\}}{Z} \right>
-----------------------------------------------------------------
[Ex: Naive Bayes Classifier 的假設]
X = \{x_1,x_2,x_3,....x_n\},Z= \{z\}
f(x_1,x_2,....x_n|z) = \prod^{n}_{i=1} f(x_i|z)
------------------------------------------------------------------
8.X joint pdf-decomposition :
(Given Nested Sequence S_i s.t \overset{=S_0}{\emptyset} \subset S_1\subset...\subset S_{n-1} \subset \overset{=S_n}{X} )
\left<\frac{X}{\emptyset} \right>= \prod^{n}_{i= 1}\left< \frac{S_{i}}{S_{i-1}} \right> = \prod^{n}_{i= 1}\left< \frac{S_{i}\setminus S_{i-1}}{S_{i-1}} \right>
[註 : 因為 S_{i-1} \subset S_{i} \Longrightarrow S_{i}\cup S_{i-1} = (S_{i}\setminus S_{i-1}) \cup S_{i-1} ]
--------------------------------------------------------------------
[Ex: 四維單一展開]
X = \{x_1,x_2,x_3,x_4\} , S_1=\{x_1\} ,S_2=\{x_1,x_2\} , S_3 = \{x_1,x_2,x_3\}
f(x_1,x_2,x_3,x_4) = f(x_1) \cdot f(x_2|x_1) \cdot f(x_3 | x_1,x_2) \cdot f(x_4 | x_1,x_2,x_3)
--------------------------------------------------------------------
[以上純為學術經驗交流知識分享,如有錯誤或建議可留言~~]
by Plus & Minus 2017.08
留言
張貼留言