跳到主要內容

Quick Formula To Find Polynomial Form Given Finite Integers


日常生活中,常常會有機智問答,如給定一個數列 $1,2,3,4,5,X$ ,請問下一項$X$是什麼,我們自然會回答 $6$ ,下一項是 $7$ ,事實上我們發現公式可以寫成 $a_k = k  \quad  k=1,2,3,...$
我們可以定義正式一個問題如下:
--------------------------------------------------------------------------
$(Q)$給定 $n$ 個整數,如何找到 $f$ 使得 $(C) : a_k = f(k) , k = 1,2,3,...n $
--------------------------------------------------------------------------
而根據知識,我們可以找到無窮多個多項式 $f$ 可以滿足$(C)$,而恰好存在唯一一個 $n-1$ 次多項式(polynomial) 可以滿足$(C)$,這問題的連續版本在數值分析(Numerical Analysis)領域稱為 interpolation ,也就是給定 $ S \subset \mathbb{R}^2$,找到一個公式$f$ 使得 $ \forall (x,y) \in S \quad f (x) = y $ [註: 這跟統計上迴歸分析不同的是,interpolation 要完全 fit !!,但是如果存在$(x,y_1),(x,y_2) \in S$,$y_1 \neq y_2$,因為函數無法一對多,則無法使用 interpolation !!   ]

而問題$(Q)$ 在筆者讀高中的時候發現的一個公式,會找到一個最低項的多項式(如果只有紙跟筆的話),分享給讀者~

先定義差分數列 $ b_k = a_{k+1}- a_{k}$ ,$\{b_k\}^{n-1}_{k=1}$ 會比 $a_k$ 少一項,記做 $\{\Delta a_k\}^{n-1}_{k=1}$ ,每做一次差分會少一項。

我們持續做會得到很多差分數列,取它們的第一項,記做 $\vec{a} :=< a_1 , \Delta a_1 , ..... \Delta^{n-1} a_1 >$ 再來定義 $\vec{b}:= <C^{k-1}_0, C^{k-1}_1 , ....C^{k-1}_{n-1} >$

所以 $$f(k) := \vec{a}\cdot \vec{b} = \sum^{n-1}_{i=0}\left[\Delta^{i}a_1 \cdot  C^{k-1}_{i} \right]  \qquad \text{(Plus & Minus  2007)}  $$

[註: 事實上我們只要做到差分數列是常數數列就可以停止了 !! ]

[舉例來說]
如下圖:  給定六個數字  $\{ a_k \}= \{1,2,4,8,15,26\}   $

$\{\Delta^{1}a_k\} = \{1,2,4,7,11\}$
$\{\Delta^{2}a_k\} = \{1,2,3,4\}$
$\{\Delta^{3}a_k\} = \{1,1,1\}$
$\vec{a}=<a_1,\Delta a_1,\Delta^2 a_1, \Delta^3 a_1> = <1,1,1,1>$

$$ f(k) = C^{k-1}_{0}+C^{k-1}_{1}+C^{k-1}_{2}+C^{k-1}_{3} $$

展開得到

$$  f(k) = 1 + (k-1) + \frac{(k-1)(k-2)}{2} + \frac{(k-1)(k-2)(k-3)}{6} $$

[檢查]
很明顯 $f(1) , f(2) , f(3)$ 都滿足要求
計算 $f(4) =  1 + 3 + \frac{3\cdot 2}{2}  + \frac{3\cdot 2 \cdot 1}{6} = 8$
         $f(5) =  1 + 4 + \frac{4\cdot 3}{2}  + \frac{4\cdot 3 \cdot 2}{6} = 15 $
         $f(6) =  1 + 5 + \frac{5\cdot 4}{2}  + \frac{5\cdot 4 \cdot 3}{6} = 26 $
我們得到了 $f$ ,這是最低項多項式可以滿足 $(C)$


[小結]
這公式當初是數感發現的,是個非常漂亮的公式,而原理應該可以用泰勒展開式的證明!!

[額外補充]
另外,還可以查詢 OEIS 大辭典,收集了數學家發現的整數數列,可以告訴你下一項是什麼 !! 還有這數列實際上會應用的地方


[以上純為學術經驗交流知識分享,如有錯誤或建議可留言~~] 
by Plus & Minus 2017.08



留言

這個網誌中的熱門文章

Chain Rule & Identity Function Trick

本文為筆者學習微積分,函數概念與Chain Rule 的時候,遇到的一些概念大坑。本文一一澄清一些個人看法,並分享 Chain Rule 廣義的樣子,以及對於遞迴系統該如何計算...等等看法。 [坑1 : 變數/值符號的認識] 一切從 $y = f(x)$ 開始,我們習慣把 Input 變數用"括號"刮起來,Output y 代表值,f 代表函數。或是可以想成這樣:   $$ x \overset{f}{\longrightarrow} y $$ 這種表示法概念上很嚴謹,但缺點是你必須要用三個符號 $x$,$y$,$f$ 而在微分方程領域出現這種寫法 $y = y(x)$  (把 $f$ 換成 $y$) ,這種寫法就頗簡潔,Chain Rule 通常都是這類表示法。缺點是心裡要能確實明白在哪個場合 $y$ 到底是給定的"值"還是"函數"(註: 通常大多代表函數 $y$,值的話通常會這樣寫 $y(x_{0})$,$y_{0}$) ============================================================== [Bonus] $y=y(x)$這種表示法還有一個好處,如果允許 $f$ 是一對多,那麼 $y(x)$ 就是 $y \text{ is depend on } x$ 的意思,如果你喜歡用集合論來表示可以先定義$f$ 的定義域/對應域 $$ f : X \rightarrow Y$$ 然後 $y(x)$ 可以寫成這樣 $y \in Y_{x}$,其中值域為 $$ f(X):=\bigcup_{x \in X}Y_{x} \subseteq Y$$ ============================================================== [坑2 : Input 的變數到底是哪些] 這邊舉兩個例子提醒: (Ex1) 代換法會重新改變函數的 Input 例如 : $y = f(x) = x+1$ , $ z = g(y) = 2y$  可以代換一下,寫成 $z = g[f(x)] = 2(x+1)$ 如果你用簡記你會發現 $y(x) , z(y) , z(y(x)) \equiv z...

General Solution Of Eigen System In Linear Algebra

本文從淺白的角度回顧線性代數( Linear Algebra ),了解特徵值( eigenvalue ),特徵向量( eigenvector ),還有特徵多項式( Characteristic Polynomial ) 的框架,並推廣其概念,還有它在解差分方程式,微分方程式,差分方程組,微分方程組的關係。 ----------------------------------------------------------- [預備知識]    向量空間( vector space ) $V$,field over $\mathbb{C}$ ,線性獨立( linear independent ), Span , Basis 等概念。 線性函數的定義為 $L : V \longrightarrow V$ , $$\forall \alpha , \beta  \in \mathbb{C} , v_1 ,v_2 \in V \quad L(\alpha v_1 + \beta v_2) =\alpha L(v_1) + \beta L(v_2) $$ 其中 $L(0) = 0 \in V$ 其中 $+$ 都是$V$裡的加法,線性函數空間記做 $L \in \mathcal{L}^{V}$ 其中存在 $O \in \mathcal{L}^{V}$ 零函數 $O(V) = \{0\}$ ,即 $\forall v \in V ,  O(v) = 0 \in V $ 其中存在 $I \in \mathcal{L}^{V}$ 送到自己函數 ,即 $\forall v \in V ,  I(v) = v \in V $ ----------------------------------------------------------- [主要動機] 給定 $b \in V$ ,  $L \in \mathcal{L}^{V}$ 如何解線性系統 $L(x) = b$ ,換句話說就是構造出 $$ S_{b}:= \left\{x \in V : L(x) = b  \right\} $$ ,而 $Ker(L) := S_{0}$ ( Kernel ) 註: 構造出...

All Different Expansion & Bell Numbers

本文分享筆者在計算排列組合(combinatorics)時,發現並描述系統性的窮舉公式 :) 暫時命名為 $\color{red}{\text{All Different Expansion }}$ ??  (有歷史文獻名詞歡迎筆者補充) [情境/動機] 假設箱子裡面有很多種物品,種類集記做 $I$ , 每種物品 $i$ 各有 $\#_i$ 個,向量記做 $\#_{I} := (\#_{i})_{i \in I}$ $$\text{箱子裡共有 } \sum_{i \in I} \#_i  \text{ 個物品}$$    令 $T := \{1,2,3,....|T|\}$,今從箱子裡"逐一"抽取物品共 $|T|$ 次 (抽出 $|T|$ 個物品) ============================================================= $$\color{blue}{\text{形成序列 : } x_{T} := (x_{t})^{|T|}_{t=1} \in I^{|T|}} $$ 註: $x_{t}$ 代表第 $t$ 次抽到的物品 ============================================================= 以下舉個小小的例子,來說明動機~ $I := \{a,b,c,d\}$,$|T| = 4 $,且假設物品個數無上限  $\color{red}{ \forall i \in I \quad \#_{i} = \infty}$ 於是我們可以開始窮舉(brute & force)情況 ~~ $\color{green}{(1)}$  $aaaa$,$bbbb$,$cccc$,$dddd$ 代表全同的情況 $\color{green}{(2)}$  $abcd$,$bcda$,$acbd$,....  代表全異的情況,共 $4!$種 $\color{green}{(3)}$  $abad$,$cbcd$,$bcba$,....  代表二同二異(且$x_{1}=x_{3}$) $\color{green}{(4)...