跳到主要內容

Expectation On Non-disjoint Events


本文為紀錄簡易博弈模型,若滿足有交集則彩金"疊加性",則傳統期望值可推廣到非互斥事件上。

給定 開獎結果(樣本空間) $\Omega$ ,投注項目集 $B$ ,
投注項目 $b$所對應的開獎結果集 $\Omega_{b}$

$$ \bigwedge_{b \in B}\left(\Omega_{b} \subset \Omega\right)$$

以及定義 $\Omega_{b}$補集:
$$\displaystyle{\bigwedge_{b \in B} \left( \bar{\Omega}_{b}:= \Omega \setminus \Omega_{b} \right) }$$

機率公設與 $\Omega_{b}$ 定義計算如下:
$$\displaystyle{ \sum_{\omega \in \Omega} P(\omega) = 1} $$
$$\displaystyle{\bigwedge_{b \in B} \left( P(\Omega_{b}) := \sum_{\omega \in \Omega_{b}} P(\omega) \right)} $$

描述文氏圖互斥分割集概念如下:
$$\displaystyle{\Omega = \bigcup^{\text{disjoint}}_{S \subseteq B} \left(\bigcap_{b \in S}\Omega_{b} \cap \bigcap_{b \in B\setminus S} \bar{\Omega}_{b}\right)  }$$

開獎機制如下:
假定 開獎結果 $\omega$,投注$b$ 項目中獎可獲得彩金 $c^{bingo}_{b}$ 元,槓龜獲得彩金 $c^{turtle}_{b}$ 元


$$\displaystyle{\bigwedge_{(b,\omega) \in B\times \Omega}\left\{\begin{array}{l}\omega \in \Omega_{b} \Longleftrightarrow \text{得到 } c^{bingo}_{b}\\ \omega \not\in \Omega_{b} \Longleftrightarrow  \text{得到 } c^{turtle}_{b} \\\end{array}  \right.}$$


(註: 若有 $\omega$ 同時被許多 $\Omega_{b}$ 交集 則彩金"疊加")

則期望彩金值滿足下面的等式,左式為推廣式,右式為傳統算法(互斥集合相加)
$$ \displaystyle{\sum_{b\in B}\left[ c^{bingo}_{b}P(\Omega_{b}) + c^{turtle}_{b}P(\bar{\Omega}_{b}) \right]}= \sum_{S \subseteq B}\left[\left(\sum_{b\in S}c^{bingo}_{b} + \sum_{b \in B\setminus S} c^{turtle}_{b}\right) P\underbrace{\left(\bigcap_{b \in S}\Omega_{b} \cap \bigcap_{b \in B\setminus S} \bar{\Omega}_{b}\right)}_{\text{disjoint sets}}\right] $$

舉例:

$B = \{ X,Y\}$ , $|B|=2$ 則期望值

 $$ \text{左式 } = c^{bingo}_{X} P(\Omega_{X}) + c^{turtle}_{X} P(\bar{\Omega}_{X})  + c^{bingo}_{Y} P(\Omega_{Y})  + c^{turtle}_{Y} P(\bar{\Omega}_{Y}) $$

$$ \text{右式 } = \overbrace{(c^{bingo}_{X}+c^{bingo}_{Y})  P(\Omega_{X} \cap \Omega_{Y})}^{S = \{X,Y\}= \Omega}  +  \overbrace{(c^{bingo}_{X}+c^{turtle}_{Y})P(\Omega_{X} \cap \bar{\Omega}_{Y})}^{S=\{X\}} +  \overbrace{ (c^{turtle}_{X}+c^{bingo}_{Y}) P(\bar{\Omega}_{X} \cap \Omega_{Y}) }^{S=\{Y\}}+  \overbrace{(c^{turtle}_{X}+c^{turtle}_{Y})P(\bar{\Omega}_{X} \cap \bar{\Omega}_{Y})}^{S=\emptyset}
$$

[小結]
此公式是非常自然,好理解的,有交集就疊加!!  比較神奇的是左式是$|B|$項相加,右式則需要 $2^{|B|}$項相加。 如果考慮到彩金疊加性,事實上我們只要 $|B|$ 個維度就能算出期望值,不需要 $2^{|B|}-1$ 個維度,而且算法跟傳統期望值定義一模一樣!!

[以上純為學術經驗交流知識分享,如有錯誤或建議可留言~~] 
by Plus & Minus 2018.03

留言

這個網誌中的熱門文章

Chain Rule & Identity Function Trick

本文為筆者學習微積分,函數概念與Chain Rule 的時候,遇到的一些概念大坑。本文一一澄清一些個人看法,並分享 Chain Rule 廣義的樣子,以及對於遞迴系統該如何計算...等等看法。 [坑1 : 變數/值符號的認識] 一切從 $y = f(x)$ 開始,我們習慣把 Input 變數用"括號"刮起來,Output y 代表值,f 代表函數。或是可以想成這樣:   $$ x \overset{f}{\longrightarrow} y $$ 這種表示法概念上很嚴謹,但缺點是你必須要用三個符號 $x$,$y$,$f$ 而在微分方程領域出現這種寫法 $y = y(x)$  (把 $f$ 換成 $y$) ,這種寫法就頗簡潔,Chain Rule 通常都是這類表示法。缺點是心裡要能確實明白在哪個場合 $y$ 到底是給定的"值"還是"函數"(註: 通常大多代表函數 $y$,值的話通常會這樣寫 $y(x_{0})$,$y_{0}$) ============================================================== [Bonus] $y=y(x)$這種表示法還有一個好處,如果允許 $f$ 是一對多,那麼 $y(x)$ 就是 $y \text{ is depend on } x$ 的意思,如果你喜歡用集合論來表示可以先定義$f$ 的定義域/對應域 $$ f : X \rightarrow Y$$ 然後 $y(x)$ 可以寫成這樣 $y \in Y_{x}$,其中值域為 $$ f(X):=\bigcup_{x \in X}Y_{x} \subseteq Y$$ ============================================================== [坑2 : Input 的變數到底是哪些] 這邊舉兩個例子提醒: (Ex1) 代換法會重新改變函數的 Input 例如 : $y = f(x) = x+1$ , $ z = g(y) = 2y$  可以代換一下,寫成 $z = g[f(x)] = 2(x+1)$ 如果你用簡記你會發現 $y(x) , z(y) , z(y(x)) \equiv z...

General Solution Of Eigen System In Linear Algebra

本文從淺白的角度回顧線性代數( Linear Algebra ),了解特徵值( eigenvalue ),特徵向量( eigenvector ),還有特徵多項式( Characteristic Polynomial ) 的框架,並推廣其概念,還有它在解差分方程式,微分方程式,差分方程組,微分方程組的關係。 ----------------------------------------------------------- [預備知識]    向量空間( vector space ) $V$,field over $\mathbb{C}$ ,線性獨立( linear independent ), Span , Basis 等概念。 線性函數的定義為 $L : V \longrightarrow V$ , $$\forall \alpha , \beta  \in \mathbb{C} , v_1 ,v_2 \in V \quad L(\alpha v_1 + \beta v_2) =\alpha L(v_1) + \beta L(v_2) $$ 其中 $L(0) = 0 \in V$ 其中 $+$ 都是$V$裡的加法,線性函數空間記做 $L \in \mathcal{L}^{V}$ 其中存在 $O \in \mathcal{L}^{V}$ 零函數 $O(V) = \{0\}$ ,即 $\forall v \in V ,  O(v) = 0 \in V $ 其中存在 $I \in \mathcal{L}^{V}$ 送到自己函數 ,即 $\forall v \in V ,  I(v) = v \in V $ ----------------------------------------------------------- [主要動機] 給定 $b \in V$ ,  $L \in \mathcal{L}^{V}$ 如何解線性系統 $L(x) = b$ ,換句話說就是構造出 $$ S_{b}:= \left\{x \in V : L(x) = b  \right\} $$ ,而 $Ker(L) := S_{0}$ ( Kernel ) 註: 構造出...

All Different Expansion & Bell Numbers

本文分享筆者在計算排列組合(combinatorics)時,發現並描述系統性的窮舉公式 :) 暫時命名為 $\color{red}{\text{All Different Expansion }}$ ??  (有歷史文獻名詞歡迎筆者補充) [情境/動機] 假設箱子裡面有很多種物品,種類集記做 $I$ , 每種物品 $i$ 各有 $\#_i$ 個,向量記做 $\#_{I} := (\#_{i})_{i \in I}$ $$\text{箱子裡共有 } \sum_{i \in I} \#_i  \text{ 個物品}$$    令 $T := \{1,2,3,....|T|\}$,今從箱子裡"逐一"抽取物品共 $|T|$ 次 (抽出 $|T|$ 個物品) ============================================================= $$\color{blue}{\text{形成序列 : } x_{T} := (x_{t})^{|T|}_{t=1} \in I^{|T|}} $$ 註: $x_{t}$ 代表第 $t$ 次抽到的物品 ============================================================= 以下舉個小小的例子,來說明動機~ $I := \{a,b,c,d\}$,$|T| = 4 $,且假設物品個數無上限  $\color{red}{ \forall i \in I \quad \#_{i} = \infty}$ 於是我們可以開始窮舉(brute & force)情況 ~~ $\color{green}{(1)}$  $aaaa$,$bbbb$,$cccc$,$dddd$ 代表全同的情況 $\color{green}{(2)}$  $abcd$,$bcda$,$acbd$,....  代表全異的情況,共 $4!$種 $\color{green}{(3)}$  $abad$,$cbcd$,$bcba$,....  代表二同二異(且$x_{1}=x_{3}$) $\color{green}{(4)...