Processing math: 0%
跳到主要內容

Expectation On Non-disjoint Events


本文為紀錄簡易博弈模型,若滿足有交集則彩金"疊加性",則傳統期望值可推廣到非互斥事件上。

給定 開獎結果(樣本空間) \Omega ,投注項目集 B
投注項目 b所對應的開獎結果集 \Omega_{b}

\bigwedge_{b \in B}\left(\Omega_{b} \subset \Omega\right)

以及定義 \Omega_{b}補集:
\displaystyle{\bigwedge_{b \in B} \left( \bar{\Omega}_{b}:= \Omega \setminus \Omega_{b} \right) }

機率公設與 \Omega_{b} 定義計算如下:
\displaystyle{ \sum_{\omega \in \Omega} P(\omega) = 1}
\displaystyle{\bigwedge_{b \in B} \left( P(\Omega_{b}) := \sum_{\omega \in \Omega_{b}} P(\omega) \right)}

描述文氏圖互斥分割集概念如下:
\displaystyle{\Omega = \bigcup^{\text{disjoint}}_{S \subseteq B} \left(\bigcap_{b \in S}\Omega_{b} \cap \bigcap_{b \in B\setminus S} \bar{\Omega}_{b}\right)  }

開獎機制如下:
假定 開獎結果 \omega,投注b 項目中獎可獲得彩金 c^{bingo}_{b} 元,槓龜獲得彩金 c^{turtle}_{b}


\displaystyle{\bigwedge_{(b,\omega) \in B\times \Omega}\left\{\begin{array}{l}\omega \in \Omega_{b} \Longleftrightarrow \text{得到 } c^{bingo}_{b}\\ \omega \not\in \Omega_{b} \Longleftrightarrow  \text{得到 } c^{turtle}_{b} \\\end{array}  \right.}


(註: 若有 \omega 同時被許多 \Omega_{b} 交集 則彩金"疊加")

則期望彩金值滿足下面的等式,左式為推廣式,右式為傳統算法(互斥集合相加)
\displaystyle{\sum_{b\in B}\left[ c^{bingo}_{b}P(\Omega_{b}) + c^{turtle}_{b}P(\bar{\Omega}_{b}) \right]}= \sum_{S \subseteq B}\left[\left(\sum_{b\in S}c^{bingo}_{b} + \sum_{b \in B\setminus S} c^{turtle}_{b}\right) P\underbrace{\left(\bigcap_{b \in S}\Omega_{b} \cap \bigcap_{b \in B\setminus S} \bar{\Omega}_{b}\right)}_{\text{disjoint sets}}\right]

舉例:

B = \{ X,Y\} , |B|=2 則期望值

  \text{左式 } = c^{bingo}_{X} P(\Omega_{X}) + c^{turtle}_{X} P(\bar{\Omega}_{X})  + c^{bingo}_{Y} P(\Omega_{Y})  + c^{turtle}_{Y} P(\bar{\Omega}_{Y})

 \text{右式 } = \overbrace{(c^{bingo}_{X}+c^{bingo}_{Y})  P(\Omega_{X} \cap \Omega_{Y})}^{S = \{X,Y\}= \Omega}  +  \overbrace{(c^{bingo}_{X}+c^{turtle}_{Y})P(\Omega_{X} \cap \bar{\Omega}_{Y})}^{S=\{X\}} +  \overbrace{ (c^{turtle}_{X}+c^{bingo}_{Y}) P(\bar{\Omega}_{X} \cap \Omega_{Y}) }^{S=\{Y\}}+  \overbrace{(c^{turtle}_{X}+c^{turtle}_{Y})P(\bar{\Omega}_{X} \cap \bar{\Omega}_{Y})}^{S=\emptyset}

[小結]
此公式是非常自然,好理解的,有交集就疊加!!  比較神奇的是左式是|B|項相加,右式則需要 2^{|B|}項相加。 如果考慮到彩金疊加性,事實上我們只要 |B| 個維度就能算出期望值,不需要 2^{|B|}-1 個維度,而且算法跟傳統期望值定義一模一樣!!

[以上純為學術經驗交流知識分享,如有錯誤或建議可留言~~] 
by Plus & Minus 2018.03

留言

這個網誌中的熱門文章

Nash Equilibrium & Best Responce Function (BRF) In Continuous Strategies

經濟學重要的賽局理論( Game Theory )領域,用數學描述人與人之間的理性互動,最重要的就是尋找奈許均衡( Nash equilibrium ), 本篇介紹其數學規劃與非線性方程組!!  假設有 p 名玩家(player i),i=1,2,3,4,5,....p , 正在玩一場遊戲(Game)~~,完全不合作,各自獨立作決策 每個人有決策向量 x_i \in \Omega_i \subseteq R^{n_i} (有n_i個決策變數)  定義長向量: \underbrace{x =  (x_1,x_2,x_3,....x_p)}_{\# \text{ of } \sum^{p}_{i=1}n_i \text{ variables }} \in  \prod^{p}_{i=1} \Omega_i = \Omega 對於每個 player i ,長向量可以寫成 x = (x_i , x_{-i})x_{-i} 代表其他人(不是 player i) 能做的決策向量。 所有人各自作決策後,每個人都會個自的存在報酬效用函數 f_i (x)  \in \mathbb{R}  (報酬函數皆為公開已知資訊) 假設每位玩家是理性人(會極大化自己效用) 即 \forall i = 1,2,3,4....p \qquad  \underset{x_i \in \Omega_i}{\text{max }}f_i(x)   [註: 如果為合作可視為多目標規劃問題( multiobjective ),即 x_1,x_2,...x_p 可以由領導人一起決定] [註: 如果為合作而且把效用加總,即目標式變成 \sum_{i=1}^{p} f_i(x) ,可能對集體效益有更大的幫助,但是如何分配效益給 ( player i )會是個議題,可以查關鍵字 fair optimization ] 我們可以定義每個 player i 的 Best Response Function (BRF) or Best Reponce Set S_i(x_{-i}) \subset \Omega_i $$  S_i(x...

Lattice & Multinomial Theorem

本文介紹格子點(Lattice) 幾何意義與多項式定理(Mutinomial Theorem) 的關係,並可協助我們理解計算一些機率問題。 [符號定義] 非負整數 / 非負實數:  \mathbb{Z}_{\geq 0} := \{0,1,2,3,4,......\}  \subseteq [0,\infty) =: \mathbb{R}_{\geq 0} 離散機率向量:  p_{I} := (p_{i})_{i \in I} \text{ s.t } \sum_{i\in I}p_i =1 ,|I|<\infty  發生事件 i \in I 的累積次數向量: k_{I} := (k_i)_{i \in I} \in \mathbb{Z}^{|I|}_{\geq 0} \mathbb{Z}^{|I|}_{\geq 0} 就是 |I| 維格子點 !! [格子點情境] 出發點定義為 k^{start}_{I}:= \overbrace{(0,0...,0)}^{|I|},今發生一次 p_{I} 分布隨機互斥事件,等價於"點的移動"(state transition),數學定義如下:   \text{Event } i  \text{ happens }  \Longleftrightarrow  \overbrace{(\color{red}{k_i},k_{-i})}^{k^{old}_{I}}  \underset{\text{with probability }p_{i}}{\longrightarrow}   \overbrace{(\color{red}{k_i+1},k_{-i})}^{ k^{new}_{I}}    PS1: 其中  k_{-i} := (k_{i'})_{i' \in I-\{i\}} PS2: 不管怎麼走都在第一象限,也就是只能往右,往上,往高.... 當發生 n 次獨立同分布 p_{I} (iid) 的事件後,所有可能點位置在以下的集合上 $$  S_{n}(\col...

Linear Regression By Using Linear Programming

當拿到一筆資料準備玩統計,往往會想要做線性迴歸( Linear Regression ),找出一個模型( mathematical model )來解釋變數間的關係,一般都是使用平方距離,但是如果我們採用絕對值距離呢?? 而剛好在工業工程( Industrial Engineering ),作業研究( Operation Research ) 領域,發展成熟的線性規劃( Linear Programming ) 恰好可以來解決,是一個跨領域的應用 !! 已經存在有許多商業或open source 軟體,如: Gurobi , Cplex , Xpress , Mosek , SCIP  可以輕易求解大型的線性規劃問題。而不僅如此也可以利用整數規劃( Integer Programming )來做特徵選擇 ( Feature Selection ),甚至可以偵測離群值( Detect Outlier ) !! 本文只介紹最小絕對值和,關於 Feature Selection , Detect Outlier 可以參考 Mixed-Integer Linear Programming Robust Regression with Feature Selection , Oleksii Omelchenko , 2010 的論文。 [Data Fitting Problem] 給定n筆實數型訓練資料 (training data) \{(x^{k},y^{k})\}^{n}_{k=1} = \mathcal{D} , x^{k} =(x^{k}_1,x^{k}_2, ... , x^{k}_{p})\in \mathbb{R}^{p} , y^{k} \in \mathbb{R} , 我們目標是想要找到一個函數 f_{\mathcal{D}} : \mathbb{R}^p \rightarrow \mathbb{R} 使得  \forall x \in \mathbb{R}^{p} , f_{\mathcal{D}}(x) \approx y , 精確來說: $$ \text{Find } f_{\mathcal{D}} \text{ such that } f_{\mathcal{D}}(x)\...