Processing math: 0%
跳到主要內容

Some Special Set On Path-Arc Structure

本文是記錄一些使用集合論語言,表達路徑(Path)/線段(Undirected Arc) 組成的關係:
令所有的路徑集為 p \in P,所有的線段集 a \in A

路徑是由許多線段(無方向性)所組成的,自然存在對應關係 E \subseteq P\times A,可使用圖論二分圖描述 G(P\cup A,E)
可以定義相依集:P_{a}:=\{p\in P : (p,a)\in E \},A_{p}:= \{a\in A :(p,a) \in E \} 
並且滿足以下自然對偶邏輯(Natural Dual Correspondence)
\bigwedge_{(p,a)\in P\times A} \left( p \in P_a  \Longleftrightarrow a \in A_{p}  \right)   
如果X_a為線段長,則很明顯路徑長可寫為 \bigwedge_{p \in P}\left( X_{p}:= X(A_p) = \sum_{a\in A_p} X_{a} \right)

路徑長公式可以寫成線性系統  X_{P} := M_{P\times A} X_{A}
(其中X_P,X_{A} 為向量,M_{P\times A}0-1 adjacency sparse  matrix)
由線性系統可以求出反矩陣,而導出 X_{A}= M^{-1}_{P\times A}X_{P} )

定義 p 損壞必定影響的路徑集
\bigwedge_{p\in P}\left( P^{\cap}_{p}:= \bigcap_{a\in A_{p}} P_{a} \right)
代表只要路徑 p 斷了,則所有路徑 p' \in P^{\cap}_{p} 也必定會斷,(pp'的一部分)  \bigwedge_{p \in P}\bigwedge_{p' \in P^{\cap}_{p}} \left(A_{p} \subseteq A_{p'}\right)

定義 p 損壞可能影響的路徑集

\bigwedge_{p \in P} \left( P^{\cup}_{p}:= \bigcup_{a\in A_{p}}P_{a} \right)

也就是兩路徑有部分的線段共同組成   \bigwedge_{p \in P}\bigwedge_{p' \in P^{\cup}_{p}}\left(A_{p} \cap A_{p'} \neq \emptyset\right)


定義完全跟 p 無關的路徑集(與 p 獨立) 

\bigwedge_{p \in P} \left(P^{\times}_{p}:= P\setminus P^{\cup}_{p}\right)
也就是兩路徑沒有共同線段組成
  \bigwedge_{p \in P}\bigwedge_{p' \in P^{\times}_{p}}\left(A_{p} \cap A_{p'} = \emptyset\right)

給定一些路徑集 P' \subset P ,可以定義必定會經過的線段集
A^{kernel}(P'):=\bigcap_{p \in P'} A_{p}   


系統核心線段可寫成 
A^{kernel} :=\bigcap_{p \in P}A_{p}


[小結]
這些集合口語上很難表達,而本文利用相依集交集聯集來描述,方便讀者能夠正確計算出集合!!

[以上純為學術經驗交流知識分享,如有錯誤或建議可留言~~] 
by Plus & Minus 2018.03

留言

這個網誌中的熱門文章

Nash Equilibrium & Best Responce Function (BRF) In Continuous Strategies

經濟學重要的賽局理論( Game Theory )領域,用數學描述人與人之間的理性互動,最重要的就是尋找奈許均衡( Nash equilibrium ), 本篇介紹其數學規劃與非線性方程組!!  假設有 p 名玩家(player i),i=1,2,3,4,5,....p , 正在玩一場遊戲(Game)~~,完全不合作,各自獨立作決策 每個人有決策向量 x_i \in \Omega_i \subseteq R^{n_i} (有n_i個決策變數)  定義長向量: \underbrace{x =  (x_1,x_2,x_3,....x_p)}_{\# \text{ of } \sum^{p}_{i=1}n_i \text{ variables }} \in  \prod^{p}_{i=1} \Omega_i = \Omega 對於每個 player i ,長向量可以寫成 x = (x_i , x_{-i})x_{-i} 代表其他人(不是 player i) 能做的決策向量。 所有人各自作決策後,每個人都會個自的存在報酬效用函數 f_i (x)  \in \mathbb{R}  (報酬函數皆為公開已知資訊) 假設每位玩家是理性人(會極大化自己效用) 即 \forall i = 1,2,3,4....p \qquad  \underset{x_i \in \Omega_i}{\text{max }}f_i(x)   [註: 如果為合作可視為多目標規劃問題( multiobjective ),即 x_1,x_2,...x_p 可以由領導人一起決定] [註: 如果為合作而且把效用加總,即目標式變成 \sum_{i=1}^{p} f_i(x) ,可能對集體效益有更大的幫助,但是如何分配效益給 ( player i )會是個議題,可以查關鍵字 fair optimization ] 我們可以定義每個 player i 的 Best Response Function (BRF) or Best Reponce Set S_i(x_{-i}) \subset \Omega_i $$  S_i(x...

Lattice & Multinomial Theorem

本文介紹格子點(Lattice) 幾何意義與多項式定理(Mutinomial Theorem) 的關係,並可協助我們理解計算一些機率問題。 [符號定義] 非負整數 / 非負實數:  \mathbb{Z}_{\geq 0} := \{0,1,2,3,4,......\}  \subseteq [0,\infty) =: \mathbb{R}_{\geq 0} 離散機率向量:  p_{I} := (p_{i})_{i \in I} \text{ s.t } \sum_{i\in I}p_i =1 ,|I|<\infty  發生事件 i \in I 的累積次數向量: k_{I} := (k_i)_{i \in I} \in \mathbb{Z}^{|I|}_{\geq 0} \mathbb{Z}^{|I|}_{\geq 0} 就是 |I| 維格子點 !! [格子點情境] 出發點定義為 k^{start}_{I}:= \overbrace{(0,0...,0)}^{|I|},今發生一次 p_{I} 分布隨機互斥事件,等價於"點的移動"(state transition),數學定義如下:   \text{Event } i  \text{ happens }  \Longleftrightarrow  \overbrace{(\color{red}{k_i},k_{-i})}^{k^{old}_{I}}  \underset{\text{with probability }p_{i}}{\longrightarrow}   \overbrace{(\color{red}{k_i+1},k_{-i})}^{ k^{new}_{I}}    PS1: 其中  k_{-i} := (k_{i'})_{i' \in I-\{i\}} PS2: 不管怎麼走都在第一象限,也就是只能往右,往上,往高.... 當發生 n 次獨立同分布 p_{I} (iid) 的事件後,所有可能點位置在以下的集合上 $$  S_{n}(\col...

Linear Regression By Using Linear Programming

當拿到一筆資料準備玩統計,往往會想要做線性迴歸( Linear Regression ),找出一個模型( mathematical model )來解釋變數間的關係,一般都是使用平方距離,但是如果我們採用絕對值距離呢?? 而剛好在工業工程( Industrial Engineering ),作業研究( Operation Research ) 領域,發展成熟的線性規劃( Linear Programming ) 恰好可以來解決,是一個跨領域的應用 !! 已經存在有許多商業或open source 軟體,如: Gurobi , Cplex , Xpress , Mosek , SCIP  可以輕易求解大型的線性規劃問題。而不僅如此也可以利用整數規劃( Integer Programming )來做特徵選擇 ( Feature Selection ),甚至可以偵測離群值( Detect Outlier ) !! 本文只介紹最小絕對值和,關於 Feature Selection , Detect Outlier 可以參考 Mixed-Integer Linear Programming Robust Regression with Feature Selection , Oleksii Omelchenko , 2010 的論文。 [Data Fitting Problem] 給定n筆實數型訓練資料 (training data) \{(x^{k},y^{k})\}^{n}_{k=1} = \mathcal{D} , x^{k} =(x^{k}_1,x^{k}_2, ... , x^{k}_{p})\in \mathbb{R}^{p} , y^{k} \in \mathbb{R} , 我們目標是想要找到一個函數 f_{\mathcal{D}} : \mathbb{R}^p \rightarrow \mathbb{R} 使得  \forall x \in \mathbb{R}^{p} , f_{\mathcal{D}}(x) \approx y , 精確來說: $$ \text{Find } f_{\mathcal{D}} \text{ such that } f_{\mathcal{D}}(x)\...